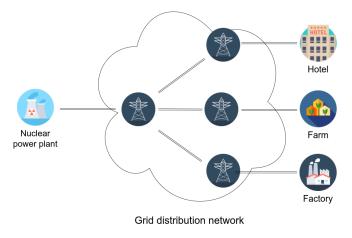
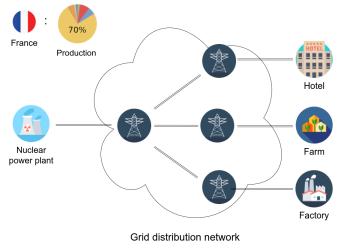
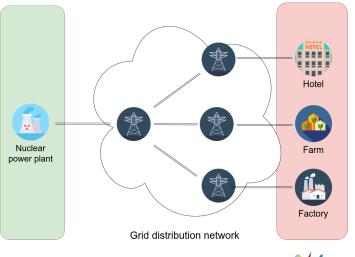
Efficient use of local energy

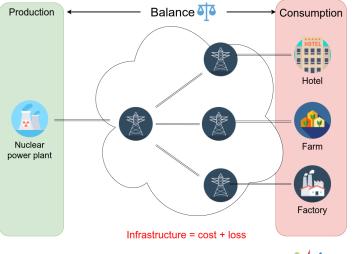

An activity oriented modeling to guide Demand Side Management

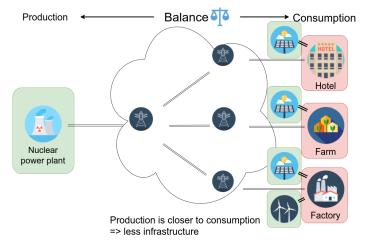
Alexandre RIO¹² Yoann MAUREL¹ Olivier BARAIS¹ Yoran BUGNI²

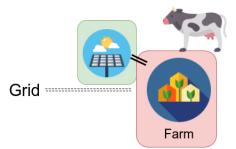

1 Univ Rennes, Inria, CNRS, IRISA Rennes, FRANCE 2 OKWind Group Vitré, FRANCE

October 19th, 2018









Farmers are :

- Collaborative
- Big energy consumers

 appliance ~ 60% of the daily consumption ⇒ easier for impact)
- at the edge of the infrastructure (blackouts)

Curently : nuclear production drives the habits

With local production final users have more freedom.

(... and the economical aspect)

Curently : nuclear production drives the habits

With local production final users have more freedom.

(... and the economical aspect)

Now we want to balance our local production with our consumption

Industrial site self-consumption

FIGURE - Dairy farm 60m² solar tracker

Self-consumption

How much energy is locally used from production : used locally total production

Industrial site self-consumption

FIGURE - Dairy farm 60m² solar tracker

Self-consumption

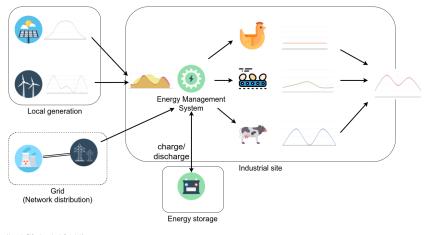
How much energy is locally used from production : <u>used locally</u> total production

Autonomy

How much energy comes from local production : <u>consumed local production</u> total consumption

State of the art does not focus on industrial processes (and residential is unpredictable)

At OKWind, we use :


- spreadsheets,
- R scripts to analyze and simulate.

Limits :

- tedious work,
- complex decisions (e.g battery usage) are complicated to use,
- can't simulate >1 year in MS Excell

Need for more appropriate tools

Alexandre RIO <alexandre.rio@okwind.fr> lcons by Vectors Market from www.flaticon.com

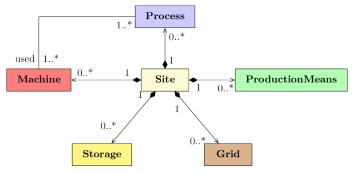


FIGURE - Metamodel simplified structure

Input for a simulator and a common language for domain experts

A DSL to represent a site, separating devices from activities Devices can be defined :

- in the DSL,
- from a CSV
- externally, in Java, for complex behavior

Batteries can be defined with few attributes : inverter power, capacity, efficiency etc

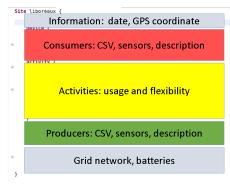


FIGURE - DSL example : 3 consumers in 2 activities, 1 producer

Input for a simulator and a common language for domain experts

A DSL to represent a site, separating devices from activities Devices can be defined :

- in the DSL,
- from a CSV
- externally, in Java, for complex behavior

Batteries can be defined with few attributes : inverter power, capacity, efficiency etc

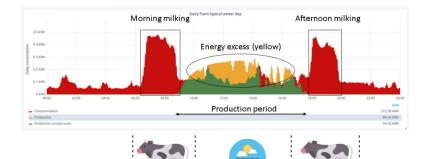

```
Site liboreaux {
   from 2018-01-20 to 2018-01-28
   device {
        Appliance liboreaux conso bruit as "plugin.timedcsvconsumer",
        Appliance liboreaux conso PAV as "plugin.timedcsyconsumer".
        Appliance liboreaux conso tank as "plugin.timedcsvconsumer"
   3
   activity {
        process bruit {
            device (liboreaux conso bruit, liboreaux conso tank)
            frequency Always
        process pav {
            device (liboreaux conso PAV)
            frequency Always
            shift between 0 h and 3 h
    production {
        Producer liboreaux 110m290BiSunSW as "plugin.timedcsvproducer"
    arid {
        Grid edf as "edf.bleu"
3
```

FIGURE - DSL example : 3 consumers in 2 activities, 1 producer

With no control

Energy excess goes back to the distribution network

Demand side management

Actions, client side, to increase energy efficiency

Experts want to answer various questions :

What-if :

- What if I shift my morning activity two hours after?
- What if I double my local production?

Experts want to answer various questions :

What-if :

- What if I shift my morning activity two hours after?
- What if I double my local production?

What-for :

- What is the best storage capacity for 50% autonomy?
- Which region allows the best autonomy for my activity domain?

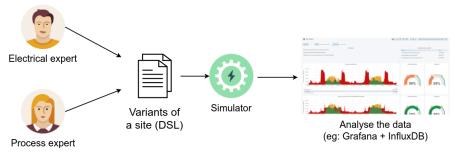


FIGURE - Experts express their concerns using the same DSL and can simulate various scenarios

Capture variability and apply scheduling algorithm

- activities schedule (start, end)
- dependencies and recurrences Actions :
 - Delay a task
 - Act on the intensity

Help us identify where to focus, effort/effect


```
process Cleaning(WaterPump, Lights) {
   after (Milking) // Dependency
   frequency Periodic
        at 10:00
        for 1 h
        on days {MONDAY, TUESDAY}
   shift between 0 h and 2 h // Flexibility
```


}

- Leave the consumption as is,
- try various combination or producers,
- various battery specifications

Economical quick pre-analysis

In progress :

- We are using the simulator in real-time with power sensors and battery API as an Energy Management System
- We're extending our model to include simulation run (EXE) details
- Benchmark scheduling algorithm to find best demand side actions

Industrial

- base for common language (shift, profile distortion),
- automated tools to size production and storage devices

Academic

- Propose a model including all different aspects, from production to consumption,
- Model for industrial processes flexibility exploration
- Benchmarking platform for energy-related scheduling algorithms

Questions?

